

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur

E-mail ID- amitkatiyar.jnu08@gmail.com Co

Cont. No. 9554548576, 8299331570 for online test series: www.maarulatest.com

Visit us: <u>www.maarulaclasses.in</u> BHU-2014

Duration- (2 Hour)

- 1. Let f(x) = |x| and $g(x) = |x^3|$, then at x = 0: (a) f(x) and g(x) are both continuous (b)f (x) and g (x) are both differentiable (c) f(x) is differentiable but g(x) is not differentiable (d) f(x) is not continuous bur g(x) is continuous 2. $\lim_{x \to 1} \frac{x + x^2 + \dots + x^n - n}{x - 1}$ is : (c) $\frac{n(n-1)}{2}$ (d) $\frac{n(n+1)}{2}$ (b)n (a)0 3. The value of the derivative of |x - 1| + |x - 3| at x = 2 is: (a)cannot be found (b)-2 (c)0 (d)2 4. If $x^m y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is equal to: (b) $\frac{py}{qx}$ (c) $\frac{qy}{px}$ (d) $\frac{x}{y}$ (a) $\frac{y}{x}$ 5. If $3^x + 3^y = 3^{x+y}$, then the value of $\frac{dy}{dx}$ at x = 1, y = 1 is: (a)-1 (b)0 (c)1 (d)3 a b 01 6. If $\begin{bmatrix} 0 & a & b \end{bmatrix} = 0$, then lb a 01 (a) a = b = -1 (b)a = b = 1 $(c)\frac{a}{b}$ is a cube root of unity (d) $\frac{a}{b}$ is a cube root of - 1 7. If α , β , γ are the roots of the equation $x^2 + px + q = 0$ (with $p \neq 0, q \neq 0$), then the value of the determinant $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$ is: (a)0 (b)p (c)q (d) $p^2 - 2q$ 8. In the expansion of $\left(x^3 - \frac{1}{x^2}\right)^{15}$, the term independent of x is: (a)-15C9 (b)0 (c)1 (d) 15C9 9. If the coefficients of the middle term in the expansion of $(1 + x)^{2n+2}$ is p and the coefficient of middle terms in the expansion of $(1 + x)^{2n+1}$ are q and r, then: (a)p = q + r (b)q = p + r (c)r = p + q (d)2p = q + r10. Arithmetic Mean of 10 consecutive natural numbers is 'M', then the Arithmetic Mean of the next 10 consecutive natural numbers is: (a)can not be found (b)M (c)M + 5 (d) M + 10 11. If G_1, G_2 are the geometric means of two series of observations and G is the geometric mean of the ratios the corresponding observations, then G is equal to: (a) $\frac{G_1}{G_2}$ (b) $logG_1 - logG_2$ (C) $\frac{\tilde{log}G_1}{logG_2}$ (d) $log \frac{G_1}{G_2}$ 12. For fitting a polynomial of K^{th} – degree, there should be: (a)K Normal equations in K unknowns (b)K Normal equations in (K+1) unknowns (c)K + 1 Normal equations in (K + 1) unknowns (d)K + 1 Normal equations in K unknowns
- 13. In an experiment, a coin is tossed twice. If the second toss results in a head, a die is rolled. The number of elements in the sample space is: (a)9 (b)12 (c)14 (d)16 14. For two events A, B associated with a random experiment, $B \subset A$, then $P(A \cap \overline{B})$ is equal to: (a) P(A) - P(B)(b) P(A) - 1 + P(B)(c) P(A) + 1 - P(B) (d) P(A) - 1 - P(B)15. Which of the following statements is correct? (a) Every LPP admits and optimal solution. (b) Every LPP admits a unique optimal solution. (c)Every LPP admits an infinite number of optimal solutions. (d) If a LPP admits two optimal solutions, is has an infinite number of optimal solutions. 16. Consider the following statements: A: the set of all feasible solutions of a LPP is called the feasible region. B: The set of all feasible solutions is a convex set. In your opinion: (a)Only A is correct (b)Only B is correct (c)Both A and B are correct (d)Both A and B are incorrect 17. If A and B are two sets, then A $(A \cap B)$ equals: (c)B (d)A \cap B $(a)\phi$ (b)A 18. A set contains n elements. The power set contains (b) n^2 elements (a)n elements (c) 2^n elements (d) n^n elements 19. In an examination, 60% candidates passed in Physics, 75% passed in Mathematics. If x% passed in both, then: (a) $15 \le x \le 60$ (b) $15 \le x \le 75$ (c) $35 \le x \le 75$ (d) $35 \le x \le 60$ 20. If A = {1, 2, 3}, B= {2, 3, 4} and C = {2, 4}, then the number of elements in (A-B) \times (B - C) is: (a)1 (b)2 (c)3 (d)4 21. The value of $\frac{1-tan^2 15^\circ}{1+tan^2 15^\circ}$ is: $(a)^{\frac{\sqrt{3}}{2}}$ (b)1 (c) √3 (d)2 22. The value of |sinx + cosx| is: (a)≤ $-\frac{1}{\sqrt{2}}$ (b)≤ $\sqrt{2}$ (c)≤2 (d)≥ $\sqrt{2}$ 23. In a triangle ABC, a = 5, b = 4, $\angle A = 60^{\circ}$, then c is the root of the equation: (b) $c^2 + 4c - 9 = 0$ (a) $c^2 + 4c + 9 = 0$ (c) $c^2 - 4c - 9 = 0$ (d) $c^2 - 4c + 9 = 0$ 24. If the angles of a triangle are in the ratio 3:2:1, the corresponding sides are in the ratio: (a)1:2:3 (b)1: $\frac{1}{2}$: $\sqrt{3}$ (c)2: $\sqrt{3}$: 1 (d)3:2:1

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- amitkatiyar.jnu08@gmail.com

Cont. No. 9554548576, 8299331570

for online test series: www.maarulatest.com

BHU-2014

Duration- (2 Hour)

25. In a triangle ABC, $\frac{b+c}{8} = \frac{c+c}{9} = \frac{a+b}{7}$, then the value of cos c is: (b) $\frac{3}{5}$ (c) $\frac{4}{5}$ (d) 1 (a)0 26. The least possible value of n for which $\left(\frac{1-i}{1-i}\right)^n$ is real is: (a)1 (b)2 (c)3 (d)4 27. If w is the cube root of unity, then w, w^2 are the roots of: (a) $z^2 + z + 1 = 0$ (b) $z^2 - z + 1 = 0$ (c) $z^2 - z - 1 = 0$ (d) $z^2 + z - 1 = 0$ 28. If $z + z^{-1} + 1 = 0$, then $z^{200} + z^{-200}$ is equal to: (a)-i (b)i (c)1 (d)-1 29. The number of vectors of unit length perpendicular to the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + k$ is: (a)2 (b)1 (c)3 (d)Infinite 30. A force $\overline{F} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ is acting at a point which is displaced from point A to B. If the position vectors of A and B are $2\hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $3\hat{\imath} - \hat{\jmath} + 2\hat{k}$ respectively, the work done by the force is: (a)2 units (b)3 units (c)4 units (d)5 units 31. A force $\overline{P} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ is acting at a point A whose position relative to origin is $\hat{i} + \hat{j} + \hat{k}$. The moment of the force about the origin is: (a) $\hat{\imath} + 2\hat{\jmath} + \hat{k}$ (b) $\hat{\imath} - \frac{2\hat{\jmath} + \hat{k}}{\hat{k}}$ (c) $\hat{\imath} + \hat{\jmath} - 2\hat{k}$ (d) $\hat{\imath} + \hat{\jmath} + 2\hat{k}$ 32. If the vectors $\overrightarrow{a} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$, $\overrightarrow{b} = -\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$ and $\rightarrow = 4\hat{i} - 2\hat{j} + \lambda \hat{k}$ form the sides of a triangle, then the value of λ is: (a)2 (b)-4 (c)-6 (d)6 33. A rigid body is rotating at 2.5 radians per second about an axis AB, where A and B are points $\hat{i} - 2\hat{j} + \hat{k}$ and $3\hat{i} - 4\hat{j} + 2\hat{k}$. The velocity of the particle P of the body at the point $5\hat{\imath} - \hat{\jmath} - \hat{k}$ is: (a) $\hat{\imath} - 5\hat{\jmath} + 6\hat{k}$ (b) $-2\hat{\imath} + 13\hat{\jmath} + 8\hat{k}$ (c) $2\hat{\imath} - \hat{\jmath} + \hat{k}$ (d) $5\hat{\imath} - 4\hat{\jmath} + 6\hat{k}$ 34. Find 'a' such that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{\imath} + a\hat{\jmath} + 5\hat{k}$ are coplanar: (a)-4 (c)-2 (d)2 (b)4 35. Weights of 1gm, 2gm, 100 gm are hanging at, marks 1, 2,.... 100 of a meter-scale. The scale will be balanced at the point marked as: (a)50 (b)60 (c)65 (d)67 36. A body of weight 4 kg rests in limiting equilibrium on an inclined plane whose slope is 30°. The normal reactions and co-efficient of frictions are, respectively: (a) $2\sqrt{3} kg_{,\frac{1}{\sqrt{3}}}$ (b) $2\sqrt{3} kg_{1} \frac{1}{\sqrt{3}}$ (c) $3\sqrt{2} kg_{,\frac{1}{\sqrt{3}}}$ (d) $3\sqrt{2} kg_{1} \frac{1}{\sqrt{2}}$ 37. The semi-vertical angle of cone of friction is 30°. The coefficient of friction is: (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$

Visit us: www.maarulaclasses.in

- 38. A uniform rod rests entirely with in a smooth spherical bowl. Its inclination to the horizontal is: (a) 0° (b) 30° (c) 35° (d) 45°
- 39. A body travelling along a straight line traversed onethird the distance with a velocity of m/s. The remaining part of the distance was covered with velocity 3 m//s for half the time and with velocity 2 m/s for the other half of the time. The average velocity of the body over the whole time of motion will be: (a)2 m/s (b)2.5 m/s (c)3 m/s (d)5 m/s
- 40. A projectile is thrown with an initial velocity $\bar{v} = (p\hat{i} + p)\hat{j}$ $q\hat{j}$) m/s. If the range of the projectile is double the maximum height reached by it, then: (a)p=2q (b)q=4p (c)q=2p (d)q=p
- 41. The position of a particle x (in meters) at a time t second is given by the relation:

$$\bar{r} = 3 + \hat{\iota} - t^2\hat{\iota} + 4\hat{k}$$

The magnitude of velocity (in m/s) of the particle after 5 seconds is:

- (a) $\sqrt{102}$ (b) $\sqrt{109}$ (c) $\sqrt{110}$ (d) $\sqrt{102}$ 42. If $\frac{1}{b+e}, \frac{1}{c+a}, \frac{1}{a+b}$ are in AP. Then: (a)a, b, c are in AP (b)a, b, c are in HP (c) a^2, b^2, c^2 are in AP (d) $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP
- 43. If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ equals: (a) $\frac{\pi^2}{8}$ (b) $\frac{\pi^2}{9}$ (c) $\frac{\pi^2}{12}$ (d) $\frac{\pi^2}{18}$
- 44. If s = 1 + a + a^2 +...., (a<1), the a = ? (a) $\frac{s}{s-1}$ (b) $\frac{s}{1-s}$ (c) $\frac{s-1}{s}$ (d) $\frac{1-s}{s}$
- 45. The sum of integers from 1 to 60 that are divisible by 2 or 3 is:
 - (b)1230 (c)1560 (d)1830 (a)330
- 46. The fifth, tenth and fifteenth terms of a GP are p, q, r respectively. Then:

(a)
$$p^2 = qr$$
 (b) $q^2 = pr$ (c) $r^2 = pq$ (d) $pqr = 7$

- 47. The sum of n terms of $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is: (a)n + $2^n - 1$ (b) n + $2^{-n} - 1$ (a) $n + 2^n - 1$ (b) $n + 2^n - 1$ (c) $n - 2^{-2} - 1$ (d) $n - 2^n - 1$
- 48. The value of $\sum_{r=1}^{n} \frac{n_{P_r}}{r!}$ is:
- (a) 2^{n-1} (b) 2^n (c) $2^n - 1$ (d) $2^{n-1} + 1$
- 49. The sum of the digits in the unit place of all the four digit numbers formed with 2, 3, 4, 5 taken all at a time, is:
 - (a)14 (b)42 (c)84 (d)336
- 50. The area of the figure bounded by the curves $y = e^{x_i}, e^{-x}$ and the straight line x = 1 is:
- (a) $e + e^{-1}$ (b) $e + e^{-1} 2$ (c) $e + e^{-1} 1$ (d) $e e^{-1} + 1$
- 51. The orthocenter of the triangle formed by x = 3, y = 4and 4x + 3y = 12 is at the point:

$$(a(3, 0) (b)(0, 4) (c)(\frac{3}{2}, 2) (d)(3, 4)$$

Maa Rula

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- <u>amitkatiyar.jnu08@gmail.com</u> **Cont. No. 9554548576, 8299331570**

for online test series: www.maarulatest.com

Visit us: <u>www.maarulaclasses.in</u> BHU-2014

Duration- (2 Hour)

52.	The lines represented by the equation $Ax^2 + 2Bxy +$					
	$Cy^2 = 0$ are perpendicular, if:					
	(a)A + B = 0 $(b)A + C = 0$					
	(c)B + C = 0 $(d)AC = -1$					
53.	The medians AD, and BE of the triangle ABC with					
	vertices A (0, b), B(0, 0) and C(a, 0) are mutually					
	perpendicular is:					
	(a)a = b (b)ab = -1 (c)a = $\pm \sqrt{2}b$ (d) b = $\pm \sqrt{2}a$					
54	The circle $x^2 + y^2 - 4x - 6y - 12 = 0$ cuts an					
01.	intercept on x-axis of length:					
	(a)8 (b)6 (c)4 (d)2					
55	The circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 2x - 2y - 1 = 0$:					
55.	(a)do not intersect					
	(b)touch internally					
	(c)touch externally					
	(d)intersect at two points					
56	The vertex of the parabola $y^2 + 6x - 2y + 13 = 0$ is:					
50.	(a)(-2, -1) (b) (-2, 1) (c) $(2, -1)$ (d) $(2, 1)$					
57	If (a, 1) is the mid-point of a chord passing through the	s.				
57.	vertex of the parabola $y^2 = 4x$, then:					
	(a)2a = 1 (b)a = 1 (c)a = 2 (d) $a^2 = 1$					
50						
58.	P is a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with A4' as	21				
	the major axis. Th <mark>en the maximum value of th</mark> e area of					
	the triangle APA' is:	4				
	(a) $\frac{1}{2}ab$ (b)ab (c)2ab (d)None of these					
59.	The line $x = at^2$ meets the ellipse at real points if, and					
	only if:					
	(a) $ t \le 1$ (b) $ t \le 2$ (c) $ t \ge 2$ (d) $ t \ge 1$					
60.	If x = 5 is the chord of contact of the hyperbola					
	$x^2 - y^2 = a$, then the equation of the corresponding pair					
	of tangents is:	٩.				
	(a) $25x^2 - 16y^2 - 90x - 81 = 0$					
	(b) $25x^2 - 16y^2 - 90x + 81 = 0$					
	(c) $25x^2 - 16y^2 + 90x + 81 = 0$					
	(d) $25x^2 - 16y^2 + 90x - 81 = 0$					
61.	The ASCH is a:					
	(a)7 bit code (b)12 bit code					
	(c)4 cit code (d)6 bit code					
62.	Which is the correct sequence of steps in the operation					
	of a basic computer?					
	(a)Fetch, execute, decode					
	(b)Fetch, decode, execute					
	(c)Decode, fetch, execute					
	(d)Execute, decode, fetch					
63.	The contents of an 8- bit register . If the					
	represented number is in signed- 1's complement form,					
	the decimal equivalent of the number is:					
	(a)-127 (b)127 (c)128 (d)-0					
64.	USB stands for:					
	(a)Universal Standard Bus					
	· /					

(b)Universal Serial Bus (c)Unified Standard BUs (d)Uniform Serial Bus 65. Level 1 cache is a form of: (a)processor (b)Input device (c)output device (s)memory 66. The number of bits required to encode 30 pieces of information is (a)4 (b)5 (d)7 (c)6 67. Which of the following is not a valid library function in the C programming language? (a)peek() (b)poke() (d)malloc () (c)atoc () 68. What is the output of the following C-program? # include <stdio.h> Void main () Char letter= 'z' Print f("\n%c", letter); } (b)90 (a)z (d)Garbage value (c)Error 69. Specify the output of the following C-program: #include<stdio.h> Void main() { Int a = 10, b = 20; Char x = 1, y = 0;If (a, b, x, y) Print f("EXAM"); } (a)AM is printed (b)EXA is printed (c)Compile error (d)None of the above 70. Hexadecimal equivalent of Octal 1217 is: (a)1217 (b)028F (c)2297 (d)0B17 71. In a certain code language 'COMPUTRONE' is written as 'PMOCTUENOR'. How is 'ADVATNSAGE' written in the same code? (a)IDUJLAIC (b)AVDATNSEGA (c)ADVATNSAGE (d)AVDANTSEGA 72. If CAT=12 then MAN=? (a)14 (b)24 (c)16 (d)None of these 73. If 'Lily' is called 'Lotus', 'Lotus', is called 'Rose', ROSE is called 'Sunflower' and sunflower is called 'Marigold', then which will be the national flower of India? (a)Lily (b)Lotus (c)Rose (d)Marigold Direction(Q no. 74-76): In each of the following questions, there is certain relationship between two given words on one side of ": :" and one word is given on

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur Cont. No. 9554548576, 8299331570

E-mail ID- amitkatiyar.jnu08@gmail.com

Visit us: www.maarulaclasses.in for online test series: www.maarulatest.com

BHU-2014

Duration- (2 Hour)

	the other side of it, while another word is to be selected						
	from the given alternative showing the same						
	relationship with the words, as the words of the given						
	pair bear. Choose the correct alternatives:						
74.	74. Malaria : Disease : : Spear :?						
	(a)Wound (b)Sword (c)Weapon (d)Death						
75.	Food : Stomach : : Fuel : ?						
	(a)Engine (b)Plane(c)Truck (d)Automobile						
76.	. Five : Ashes : : Explosion : ?						
(a)Flame (b)Death (c)Sound (d)Debris							
Directions (Q no 77-83): The following questions const							
of two words that have certain relationship between							
	each other, followed by four letter pairs of words. Select						
	the related pair that has the same relationship as the						
	original pair of words:						
77.	Fodder : Cattle : : ?						
	(a)Pen : Ink (b)Ball : Stick						
	(c)Fruit : Juice (d)Grass : Horse						
78.	Horse : Hoof : : ?						
	(a)Man : Foot (b)Dog : Black						
	(c)Paise : Rupee (d)Pen : Pencil						
79.	Sailor : Compass : : ?						
	(a)Student : Exam (b)Doctor : Stethoscope						
	(c)Pen : Officer (d)Painter : Artist						
80.	Cells : Cytology : : ?						
	(a)Worms : Ornithology (b)Insects : Entomology						
	(c)Diseases : Physiology (d)Tissues : Morphology						
81.	Sin : Crime : : ?						
	(a)Man : Animal (b)Home : Court						
	(c)Morality : Legality (d)Jury : Priest						
82.	Man : Mammal : : ?						
	(a)Liberty : : literate (b)Hail : Snow						
	(c)Native : Inhabitant (d)Offspring : Family						
83.	Spring : Elasticily : : ?						
	(a)Persons : Whims (b)Wool :Warmth						
	(c)Marketing : Advertising (d)Radio : Broadcast						
	Directions : (Q no. 84-90): In each of the following						
	questions four pair of words are given, out of these						
	words one pair does not bear the common relationship						
	which rest bear. You are required to find that odd pair.						
84.	(a) Needle – Prick (b) Gun- Fire						
0.5	(c)Auger-Bore (d)Chisel- Carve						
85.	(a) Lion-Roar (b) Snake-Hiss						
o /	(c)Bees-Hum (d)Frog-Bleat						
86.	(a) Dim-Bright (b) Wrong-Right						
07	(c)Shallow-Deep (d)Genuine-Real						
87.	(a) Oil-Lamp (b) Water-Tap						
00	(c)Oxygen-Life (d)Chisel- Carve						
ԾԾ.	(a) Needle – Prick (b) Gun- Fire						
00	(c)Auger-Bore (d)Chisel- Carve						
07.	(a)Captain-Team (b)Boss-Gang						

(c)Chief Minister-Cabinet (d)Artist-Troupe

- 90. (a)Hard-Soft (b)Pointed-Blunt (c)Sweet-Soar (d)Long-High
- 91. A man starts from a point 'X' and walks 3 km southwards, then he turns left and walks 6 km. In which direction is he from the starting point? (b)South-East (a)South-West (c)West (d)South
- 92. Ram and Shyam start walking in opposite directions. Ram covers 6 km and Shyam 8 km. Then Ram truns right and walks 8 km and Shyam turns Left and walks 6 km. How far everyone is from the starting point?
- 93. If 18th February, 2009 is a Friday, then what will be the day of 18th February, 2011? (a)Sunday (b)Monday
 - (c)Tuesday (d)Wednesday
- 94. Which number, in the given series, is wrong? 160, 118, 83, 65, 34, 20
 - (a)83 (b)118 (c)34 (d)65
- 95. Find the missing number in the following:

(b)26 (c)39 (d)45

- 96. If (i) ' A-B' means ' A is father of B' (ii) 'A+B' means ' A is daughter of B'
 - (iii) 'A ÷ B' means ' A is son of B'
 - (iv) 'A× B' means ' A is wife of B'

(a)1

- Which of the following means P is grandson of S? (a) P + Q - S (b) $P \div Q \times S$ (c) $P \div Q \div S$ (d) $P \times Q \div S$
- 97. Today is Monday. After 61 days, it will be: (a) Wednesday (b) Saturday
- (c) Tuesday (d) Thursday
- 98. Consider the statement: A = B C \geq D = E \leq F Conclusions I: F > B

$$II.B \geq D$$

In your opinion :

(a)Only conclusion I follows

(b)Only conclusion II follows

- (c)Either conclusion I or II follows
- (d)Neither conclusion I nor II follows
- 99. Consider the statement: Imprisonment for 27 years made Nelson Mandela the President. Assumptions I. Only who will be imprisoned for 27 years will become the President.

Add:-IN FRONT OF ANURAG HOSPITAL, 9 NO. CROSSING KANPUR Mo. No. 9554548576, 8299331570

En

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- amitkatiyar.jnu08@gmail.com

Cont. No. 9554548576, 8299331570

for online test series: www.maarulatest.com

BHU-2014

Duration- (2 Hour)

II. To become the President, imprisonment is a							
qualification. In your opinion:							
(a)Only Assumption I is implicit							
(b)Only Assumption II is implicit							
(c)Either I or II is implicit							
(d)Neither I nor II is implicit							
100. How many times are the hands of a clock at right							
angle in a day?							
(a)22 (b)24 (c)44 (d)48							
101. Karl Pearson's coefficient of skewness is given by:							
$(a)^{AM-Median}$ (b) $^{AM-Mode}$							
$\begin{array}{l} (a)\frac{AM-Median}{SD} \\ (b)\frac{AM-Mode}{SD} \\ (c)\frac{Median-Mode}{SD} \\ (d)\frac{AM-Mode}{Median} \end{array}$							
(c) $\frac{Median}{SD}$ (d) $\frac{Ma}{Median}$							
102. If standard deviation of $\{x_1, x_2, \dots, x_n\}$ is S, then the							
standard deviation of $\{1 - 2x_1, 1 - 2x_2, \dots, 1 - 2x_n\}$ is equal							
to							
(a) $1 - 2S$ (b)-2S (c)2S (d)1-S							
103. If X and Y are two variables such that $SD(X + Y) \ge 1$							
SD(X - Y) then:							
(a) $-1 \le r(X, Y) \le 0$ (b) $0 \le r(X, Y) \le 1$							
(c) $r(X,Y) = 0$ (d) $r(X,Y) = \pm 1$							
104. If two lines of re <mark>gression of Y on X and X on Y are</mark>							
respectively $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$							
0,then							
(a) $a_1 a_2 \le b_1 b_2$ (b) $a_1 b_2 \le a_2 b_1$							
(c) $a_1 b_2 \ge a_2 b_1$ (d) $a_1 a_2 \ge b_1 b_2$							
105. For any two events A and B, the probability that							
exactly one of the two events occurs, is given by:							
(a)P(A) + P (B) – P (A <mark>∩B)</mark>							
(b)P(A) + P (B) – 2P (A <mark>∩B)</mark>							
(c)1 – P(A ∩ B) (d) 1 – P(A ∪ B)							
106. A fair coin is tossed repeatedly. If head appears in							
first four tosses, then the probability of head appearing							
in the fifth toss is :							
(a) $\frac{1}{32}$ (b) $\frac{1}{5}$ (c) $\frac{1}{2}$ (d) $\frac{31}{32}$							
107. Consider the LPP: Minimize $Z = 3x + 5y$							
Subject to $x \ge 3$; $y \ge 1$; $2x + y \ge 5$							
Redundant constraint in this Lpp is:							
(a) $2x + y \ge 5$ (b) $y \ge 1$ (c) $x \ge 3$ (d)None of these							
108. Solve the LPP:							
Maximize $Z = 2x + 3y$							
Subject to $X \le 3$; $y \le 3$; $x + y \le 5$; $x, y \ge 0$							
What do you find?							
(a)Optimal solution is at $x = 2, y = 3$; Maximum value of							
Z = 12							
(b)Optimal solution is at $x = 3, y = 2$; Maximum value of							
(b)Optimal solution is at $x = 3, y = 2$; Maximum value of $Z=12$							
(c)Optimal solution is at $x = 3$, $y=2$; Maximum value of							
Z = 13							
(d)Optimal solution is at $x = 2$, $y = 3$; Maximum value of							
Z = 13							
I							

Visit us: www.maarulaclasses.in

109. If sets A and B are defined as:					
$A = \{(x, y)\} \ y = e^x, \ x \in R\}$					
B = { (x, y) } y = x, x $\in R$ } then:					
(a) $A \subset B$ (b) $B \subset A$ (c) $A \cap B = \phi$ (d) $A \cup B = A$					
110. In a battle 71% of the combatants lost and eye, 82% an ear, 74% an arm and 83% a leg. If x% lost all the					
four limbs, then the minimum value of x:					
(a)can not be determined (b)10					
(c)71 (d)None of these					
111. If $\tan \theta \tan 2\theta = 1$, then $\theta = ?$					
(a) $n\pi + \frac{\pi}{6}$ (b) $n\pi \pm \frac{\pi}{6}$ (c) $2n\pi \pm \frac{\pi}{6}$ (d) $2n\pi + \frac{\pi}{6}$					
(c) $2n\pi \pm \frac{\pi}{c}$ (d) $2n\pi + \frac{\pi}{c}$					
112. If sin $x + sin 3x + sin 5x = 0$, then the value of x					
such that $0 < x \leq \frac{\pi}{2}$ is:					
(a) $\frac{\pi}{12}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$					
113. The equation $a \cos x + b \sin x = c$ where $ c > c$					
$\sqrt{a^2 + b^2}$ has :					
(a)no solution					
(b)a unique solution					
(c)two solutions					
(d)an infinite number of solutions					
114. The domain of sin^{-1} is:					
(a) $(-1,1)$ (b) $(-\pi,\pi)$ (c) $(0,2\pi)$ (d) $(-\infty,\infty)$					
115. $\sin^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = ?$					
(a) $tan^{-1}\left(\frac{1}{18}\right)$ (b) $tan^{-1}\left(\frac{17}{36}\right)$ (c) $tan^{-1}\left(\frac{1}{2}\right)$ (d) $\left(\frac{1}{2}\right)tan^{-1}\left(\frac{3}{5}\right)$					
(c) $tan^{-1}\left(\frac{1}{2}\right)$ (d) $\left(\frac{1}{2}\right)tan^{-1}\left(\frac{3}{2}\right)$					
116. If the sides of a triangle are 7 cm, $4\sqrt{3}$ cm and $\sqrt{13}$					
cm respectively, then the smallest angle is:					
(a)15° (b) 30° (c) 45° (d) 60°					
117. If b = 3, c = 4, $\angle B = \frac{\pi}{3}$, then the number of triangle					
that may be constructed is:					
(a)0 (b)1 (c)2 (d)Infinite					
118. The angle of elevation of the top of an incomplete					
vertical pillar at a horizontal distance of 50 mt, from its					
base is 45 [°] . If the angle of elevation of the complete pillar at the same point is to be 60°, then the height of					
the incomplete pillar is to be increased by:					
(a)25 mt (b)50($\sqrt{3}$ -1) mt					
(c)50 mt (d) $50(\sqrt{3}+1)$ mt					
119. If every pair from the equations $x^2 + px + qr = 0$; $x^2 + px + qx + qr = 0$; $x^2 + px + qr = 0$; $x^2 + px + qr = 0$; $x^2 + $					
$qx + pr = 0$ and $x^2 + rx + pq = 0$ has a common root,					
then the product of the three common roots is:					
(a) \sqrt{pqr} (b)pqr (c) $p^2q^2r^2$ (d)2 pqr					
120. The value of $\sqrt{8 + 2\sqrt{8 + 2\sqrt{8 + 2}}}$					

(b)6

(c)8

(a)4

(d)10

Add:-IN FRONT OF ANURAG HOSPITAL, 9 NO. CROSSING KANPUR Mo. No. 9554548576, 8299331570

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- <u>amitkatiyar.jnu08@qmail.com</u>

Cont. No. 9554548576, 8299331570

for online test series: www.maarulatest.com

Visit us: www.maarulaclasses.in BHU-2014

Duration- (2 Hour)

121	. The nu	mber of	real root	ts of the equation: $ x ^2$ -
	5 x + 4 = 0			
	(a)1			(d)4
122				of $x^2 + bx + c = 0$ amd
	$x^2 + qx + r$			
				bq = cr (d) $br = cq$
123	. The nu			the equation:
				+2=0, is
	(a)0	. ,	(-)	(d)4
124				4 directed envelops. The
		-	I the lett	ters are placed in a wrong
	envelope is		(-)0	
	(a)6		(c)9	
	(a)6	(b)8	(c)9	(d) $12\frac{1}{x+1}$
125	. Four m	en and f	our wom	nen are to sit around a
	circular ta	ble such	i that the	ere is a man on either side of
				of seating arrangements is:
	(a)3! × 4!			
126				icients in the expansion of
			e <mark>n the la</mark>	argest coefficient in the
	expansion		-	
	(a)84		(c)168	
127				statements:
				associative
				not commutative, in general.
				may be a null matrix, while
	neither of		a null m	iatrix.
	In your op			
	(a) A is inco	orrect		incorrect ne three statements are
		orreci	(a)All u	he three statements are
128	correct	a matri	v oguativ	on AB=AC we can conclude B
120	= C provid		x equation	JIT AB=AC we can conclude b
	(a)Singular		(h)Non-	singular
	(c)Symmet			
129				statements:
127	$A = \lim_{x \to 0} ($			statements.
	$B = \lim_{x \to \infty} B_{x \to \infty}$			
	In your op		-	
	(a) Only A		ct	
	(b)Only B i			
	(c)Both A a			t
	(d)Both A a			
120				stants, then $\frac{dy}{dx} = ?$
13C				cure -
	$(a) \frac{y}{x \log x}$	(b) $\frac{y \log x}{x}$	(C)-	$-\frac{y}{x \log x}$ (d) $\frac{x}{y \log x}$
131	. If <i>tan</i> ⁻¹	$4x + tan^{-1}$	$^{-1}6x = \frac{\pi}{4}$	then x equal to:
			-	(d)None of these
	12	(8) 2	(0) 12	

132. If μ is the coefficient of friction between two bodies in contact, then: (b) $-1 \le \mu \le 1$ (a) $0 \le \mu \le 1$ (c) $-\frac{1}{2} \le \mu \le \frac{1}{2}$ (d) $\mu > 1$ 133. For $2 \le r \le n_r nC_r + 2 nC_{r-1} + nC_{r-2} = ?$ (a) ⁿ⁺¹Cr-1 (b) 2n+1Cr+1 (d) n+2Cr (c)2 n+2Cr 134. If $f(x) = \frac{x-1}{x+2}$, then f(2x) is: (b) $\frac{3f(x)+1}{f(x)+3}$ (a) $\frac{f(x)+1}{f(x)+3}$ (C) $\frac{f(x)+3}{f(x)+1}$ (d) $\frac{f(x+1)}{f(x)+3}$ 135. The line x + y = 6 is normal to the parabola $y^2 = 8x$ at the point: (a) (4,2) (b) (2,4) (c) (2,2) (d) (3,3)136. The largest revenue source in India is: (a)Railways (b)Sales Tax (c) Excise Duty (d) Direct Tax 137. Which of the following is not provided in the Constitution of India? (a) Election Commission (b)Finance Commission (c)Public service Commission (d)Planning Commission 138. Which of the following cities is known as the commercial capital of India? (a)New Delhi (b) Kolkata (c) Chennai (d) Mumbai 139. Who founded the Bharatiya Janasangh? (a)Dr. Shyama Prasad Mukherjee (b)Deen Dayal Upadhyaya (c)Veer Savarkar (d)Atal Vehari Vajpavee 140. Tides in sea are coused by: (a)Effect of Sun (b)Effect of Moon (c) Combined effect of Sun and Moon (d)Gravitational, centripetal and centrifugal forces 141. Polio myelitus is a type of: (a)bacterial disease (b)viral disease (c)fungal disease (d)none of these 142. Who is the present Governor of Reserve Bank of India? (a)D. Subbarao (b)C. Rangarajan (c)Raghuram Rajan (d)Osborne Smith 143. What is the name of the first antibiotic discovered? (a)Pennicilin (b)Streptomycin (c) Actinomycin (d)Tetracycline 144. The next Common Wealth Games will be held in: (a)Edinburgh (b)Kuala Lumpur (c)Glasgow (d)Gold Coast

145. The president of India can be removed from his office by the:

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- amitkatiyar.jnu08@gmail.com Cont. No. 9554548576, 8299331570

for online test series: www.maarulatest.com

BHU-2014

Visit us: www.maarulaclasses.in

Duration- (2 Hour)

(a)Prime Minister (b)Lok Sabha (c)Chief Justice of India (d)Parliament 146. Fill in the blanks by selecting one from the given alternatives: " Ram, you can call me......Mondya......3 O'clock......the after noon." 147. What is the synonym of ' Crucial'? (a)Active (b)Dependent (c)Extremely important (d)Reserve 148. "Birds of same.....flock together." Fill in the blank from the given alternatives: (a)feather (b)colour (c)group (d)foreign trance 149. "My best friend, John, is named..... his grandfather". Fill in the gap by the appropriate alternative: (a)to (b)about (c)after (d)on 150. Fill in the gap by the alternatives: "I told you about the incident yesterday,.....I." (a)didn't (b)don't (c)do (d)did