Entr

12

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- amitkatiyar.jnu08@gmail.com

Cont. No. 9554548576, 8299331570

for online test series: www.maarulatest.com

BHU-2011

Duration- (2 Hour)

1.	The harmonic mean of the roots of the equation		
	$(5+\sqrt{2})x^2-(4+\sqrt{5})x+8+2\sqrt{5}=0$ is:		
2.	(a) 2 (b) 4 (c) 6 (d) 8 The number of quadratic equations which remains unchanged by squaring their		
2.	roots, is :		
0	(a) Zero (b) Four (c) Two (d) Infinite		
3.	The nth term of the serried $2\frac{1}{2} + 1\frac{7}{13} + 1\frac{1}{9} + \frac{20}{23} + \dots $ Is		
	(a) $\frac{20}{5n+3}$ (b) $\frac{2}{5n-3}$ (c) 20 (5n + 3) (d) $\frac{20}{5n^2+3}$		
4.	The coefficient of x^{15} the product		
	$(x-1)(2x-1)(2^2x-1) \dots (2^{15}x-1)$ is equal to:		
	(a) $2^{120} - 2^{108}$ (b) $2^{105} - 2^{121}$ (c) $2^{120} - 2^{105}$ (d) $2^{120} - 2^{104}$		
5.			
	The value of $\sum_{p=1}^{6} 2\left(\sin\frac{2p\pi}{7} - i\cos\frac{2p\pi}{7}\right)$ is : (a) 1 (b) 2 (c) 2 <i>i</i> (d) -2 <i>i</i>		
6.	If $1, \omega, \omega^2, \dots, \omega^{n-1}$ are nth roots of unity, then $(1-\omega)(1-\omega^2)\dots(1-\omega^{n-1})$ is equal to :		
	(a) n^2 (b) 0 (c) 1 (d) n		
7.	The number of subsets of a set containing n distinct object is		
	(a) $nC_1 + nC_2 + nC_3 + nC_4 + \dots + nC_n$ (b) $2^n - 1$		
	(c) $2^n + 1$		
8.	(d) $nC_0 + nC_1 + nC_2 + \dots + nC_n$ There are n numbered seats around a round table. Total number of ways in which		
	$n_1(n_1 < n)$ persons can sit around the round table, is equal to :		
	(a) ${}^{n}C_{n1}$ (b) ${}^{n}P_{n1}$ (c) ${}^{n}C_{n1-1}$ (d) ${}^{n}P_{n1-1}$		
9.	If the coefficient of x^7 in the expansion of $\left(px^2 + \frac{1}{qx}\right)^{11}$ is equal to the coefficient of x^{-7}		
	in the expansion of $\left(px - \frac{1}{qx^2}\right)^{11}$, then		
	(a) $pq = 1$ (b) $\frac{p}{q} = 1$ (c) $p + q = 1$ (d) $p - q = 1$		
10.	In the binomial expansion of $(a - b)^n$, $n \ge 5$, the sum of the 5 th and 6 th terms is zero. Then a/b equals :		
	(a) $\frac{n-4}{r}$ (b) $\frac{n-5}{r}$ (c) $\frac{5}{r}$ (d) $\frac{6}{r}$		
	Then a/b equals : (a) $\frac{n-4}{5}$ (b) $\frac{n-5}{6}$ (c) $\frac{5}{n-4}$ (d) $\frac{6}{n-5}$ If $\begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \end{vmatrix} = 0$, where x, y, z are unequal and non-zero real numbers, then xyz is a small the number of th		
11.	If $\begin{bmatrix} y & y^2 & 1+y^3 \end{bmatrix} = 0$, where x, y, z are unequal and non-zero real numbers, then xyz $\begin{bmatrix} z & z^2 & 1+z^3 \end{bmatrix}$		
	If $A = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 3 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 3 \\ 1 & -5 \\ 4 & -1 \end{bmatrix}$, then AB is equal to : (a) $\begin{bmatrix} -3 & -1 \\ -9 & -3 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -1 \\ 9 & -3 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 1 \\ 9 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 1 \\ -9 & 3 \end{bmatrix}$ If $A = \begin{bmatrix} 1 & -2 & -3 \\ 3 & 2 & -1 \end{bmatrix}$, then A is :		
12.	If $A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -5 \\ 4 & 1 \end{bmatrix}$, then AB is equal to :		
	(a) $\begin{bmatrix} -3 & -1 \\ 0 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 1 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$		
10	$\begin{bmatrix} 1 & -2 & -3 \end{bmatrix}$		
13.	$ A = \begin{bmatrix} 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$, then A is:		
	(a) Symmetric matrix (b) A skew symmetric matrix (c) A singular matrix (d) Non-singular matrix		
14.	If $x = \frac{1}{2}(\sqrt{3} + 1)$, then the value of expression $4x^3 + 2x^2 - 8x + 7$ equal to :		
	(a) 10 (b) 5 (c) 0 (d) -2		
15.	If the ratio of the sum of m terms and n terms of an A.P. be $m^2:n^2$, then its ratio of its m^{th} and n^{th} terms will be :		
	(a) $\frac{m-n}{m+n}$ (b) $\frac{2m-1}{2n+1}$ (c) $\frac{2m+1}{2n+1}$ (d) $\frac{m+n}{m-n}$		
16.	If in a G.P. sum of n terms is 255, the last term is 128 and the common ratio is 2,		
	then the value of n is equal to : (a) 2 (b) 4 (c) 8 (d) 16		
17.	The value of 7 $\log \frac{16}{15} + 5 \log \frac{25}{24} + 3 \log \frac{81}{80}$ is equal to :		
	(a) O (b) log 2 (c) log 3 (d) log 5		
18.	If $A = \{a, b, d, l\}, B = \{c, d, f, m\}$ and $C = \{a, l, m, o\}$, then $C \cap (A \cup B)$ is given by : (a) $\{a, d, l, m\}$ (b) $\{b, c, f, o\}$		
	(c) $\{a, l, m\}$ (d) $\{a, b, c, d, f, l, m, o\}$		
19.	The number of subsets of an <i>n</i> elementric set is : (a) $2n = -(1)^{2n} + (1)^{2n}$		
20.	(a) $2n$ (b) n (c) 2^n (d) $\frac{1}{2}2^n$ If $A = \{1, 2, 3\}, B = \{4, 5, 6\}$, which of the following are relations from A to B?		
20.	(a) {(1,5), (2,6), (3,4), (3,6)}		
	(b) $\{(1, 6), (3, 4), (5, 2)\}$ (c) $\{(4, 2), (4, 3), (5, 1)\}$		
	(c) $\{(4,2),(4,3),(5,1)\}$ (d) $B \times A$		
21.	If $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function described by the formula $f(x) = ax + ax$		
	<i>b</i> for some integers a, b then the value of a, b is : (a) $a = -1, b = 3$ (b) $a = 3, b = 1$		
	(c) $a = -1, b = 2$ (d) $a = 2, b = -1$		
22.	A straight line passes through the point $P(2,\sqrt{3})$ and makes an angle of 60° with the		
	x-axis. The length of the intercept on it between the point P and the line $x + \sqrt{3}y =$ 12		

Visit us: www.maarulaclasses.in

	(a) 1.5 (b) 2.5 (c) 3.5 (d) 4.5			
23.	The coordinates of the orthocenter of the triangle formed by the lines $2x^2 - 2y^2 + $			
	3xy + 3x + y + 1 = 0 and $3x + 2y + 1 = 0$ are : (a) $(4/5, 3/5)$ (b) $(-3/5, -1/5)$			
	(a) (4/5, 3/5) (b) (-3/5, -1/5) (c) (1/5, 4/5) (d) (2/5, 1/5)			
24.	The equation $\sqrt{(x^2 + 4y^2 - 4xy + 4)} + x - 2y = 1$ represents a			
24.	(a) straight line (b) circle			
	(c) Parabola (d) Pair of straight line			
25.	Two circles $x^2 + y^2 = 5$ and $x^2 + y^2 - 6x + 8 = 0$ are given. Then the equation of the			
	circle through their point of intersection and the point (1, 1) is :			
	(a) $x^2 + y^2 - 6x + 4 = 0$ (b) $x^2 + y^2 - 3x + 1 = 0$ (c) $x^2 - x^2 - 5x + 2 = 0$ (d) $x^2 - x^2 - 5x + 2 = 0$			
26.	(c) $x^2 + y^2 - 4x + 2 = 0$ (d) $x^2 + y^2 - 5x + 3 = 0$			
20.	An equilateral triangle is inscribed in the parabola $y^2 = 4ax$ whose vertex is at the vertex of the parabola. The length of its side is :			
	(a) $a\sqrt{3}$ (b) $2a\sqrt{3}$ (c) $4a\sqrt{3}$ (d) $8a\sqrt{3}$			
27.	If in ellipse the length of latus rectum is equal to half of major axis, then			
	eccentricity of the ellipse is			
	(a) $\sqrt{3}/2$ (b) $1/2$ (c) $\sqrt{2}$ (d) $1/\sqrt{3}$			
28.	The difference of the focal distances of any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is :			
	(a) a (b) 2a (c) b (d) 2b			
29.	Every homogenous equation of second degree in x and y represent pair of lines			
(a) parallel to x-axis (b) perpendicular to y-axis (c) through the origin (d) parallel to y-axes				
20	The value of lim $\frac{\tan \pi x}{1-1}$ lim $\left(1-\frac{1}{2}\right)^{x}$ is equal to			
30.	The value of $\lim_{x \to -2} \frac{\tan \pi x}{x+2} + \lim_{x \to \infty} \left(1 + \frac{1}{x^2}\right)^x$ is equal to (a) $\pi + 1$ (b) $\pi - 1$ (c) π (d) 3			
	(a) $\pi + 1$ (b) $\pi - 1$ (c) π (d) 3			
	$ \begin{aligned} \text{If } f(x) &= \begin{cases} 0 & \text{at } x = 0 \\ \frac{1}{2} - x + [x] & \text{if } 0 < x < \frac{1}{2} \\ \frac{1}{2} & \text{if } x = \frac{1}{2} \\ \frac{2}{3} - x & \text{if } \frac{1}{2} < x < 1 \\ 1 & \text{if } x = -1 \end{aligned} $			
31.	$ f(x) = \begin{cases} \frac{1}{2} & \text{if } x = \frac{1}{2} \end{cases}$			
	$\frac{2}{2-x}$ if $\frac{1}{2} < x < 1$			
	$\int_{1}^{3} \frac{1}{x^{2}} \int_{1}^{2} \frac{1}{x^{2}} = 1$			
	Then $f(x)$ is :			
	(a) Continuous at $x = 1/2$ (b) Continuous at $x = 1$			
	(c) continuous at $x = 0$ (d) Discontinuous at $x = 0$			
32.	The derivative of $\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ w.r.t. $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is : (a) -1 (b) 0 (c) $1/x$ (d) x b) $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is :			
	(a) -1 (b) 0 (c) $1/x$ (d) x			
33.	The differential coefficient of x [*] is .			
	(a) $x^x \log x$ (b) $x^x \left(\log x + \frac{1}{x} \right)$ (c) $x^x (\log x + 1)$ (d) xx^{x-1}			
34.	The straight line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = b e^{-x/a}$ at the point			
	(a) where it crosses the y-axis			
	(b) where it crosses the x-axis			
	(c) (0, 0) (d) (1, 1)			
35.	The equation of tangent to the curve $y^2 = 2x^3 - x^2 + 3$ at the point (1, 4) is			
	(a) $y = 2x$ (b) $x = 2y$ (c) $y = 4x$ (d) $x = 4y$			
36.	The length of the normal at the point (2, 4) to the parabola $y^2 = 8x$ is:			
	(a) $4\sqrt{2}$ (b) 4 (c) $\sqrt{6}$ (d) $2\sqrt{3}$			
37.	The normal to the curve $x = a(\cos\theta + \theta \sin\theta)$, $y = a(\sin\theta - \theta \cos\theta)$ at any point θ is such that it			
	(a) Passes through the origin			
	(b) Makes a constant angle with the x-axis			
	(c) Makes a constant angle with the y-axis			
	(d) Is at constant distance from the origin			
38.	The function $f(x) = \sin x(1 + \cos x)$ has a maximum value when			
20	(a) $x = \frac{1}{2}\pi$ (b) $\frac{1}{3}\pi$ (c) $\frac{1}{4}\pi$ (d) $\frac{1}{7}\pi$ The function $f(x) = 8x^5 - 15x^4 + 10x^2$ has no extreme value at			
39.				
40.	(a) $x = -\frac{1}{2}$ (b) $x = \frac{1}{2}$ (c) $x = 1$ (d) $x = -1$ The value of $\int \log x dx$ is :			
40.	(a) $x (\log x + 1)$ (b) $x (\log x - 1)$			
	(c) $\log x (x + \log x)$ (d) $x (x - \log x)$			
41.	The value of $\int \frac{\ln n^{-1}x}{1+x^2} dx$ is :			
	(a) $e^{\tan^{-1}x}$ (b) $e^{-\tan^{-1}x}$ (c) $\frac{1}{1+x^2}$ (d) $-\frac{1}{1+x^2}$			
12	1+1- 1+1-			
42.	The value of $\int \frac{x-1}{(x-2)(x-3)} dx$ is			
	(a) $2 \log(x - 2) + \log(x - 3)$ (b) $\log(x - 2) - \log(x - 3)$			
	(c) $\log(x-2) - \log(x-3)$ (c) $\log(x-2) - \log(x-3)$			
	(d) $-\log(x-2) + 2\log(x-3)$			
43.	The value of $\int_0^{\pi/4} \frac{\sin\theta + \cos\theta}{9+16\sin 2\theta} d\theta$ is :			
	(a) $\frac{1}{10}\log 2$ (b) $\frac{1}{20}\log 5$ (c) $\frac{1}{20}\log 3$ (d) $\frac{1}{30}\log 7$			
44.	The volume of a right circular cylinder of height h and radius of base r is :			

(d) $\frac{1}{2}\pi r^{2}h$ (a) $\frac{1}{3}\pi r^2$ (b) $\pi r^2 h$ (C) $\frac{4}{3}\pi r^2 h$

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- amitkatiyar.jnu08@gmail.com

Cont. No. 9554548576, 8299331570

for online test series: www.maarulatest.com

BHU-2011

Visit us: www.maarulaclasses.in

Duration- (2 Hour)

45.	If l denoted slant height, r_1 and r_2 denote the radii of the frustum of cone, then	(c) unity (d) zero
	curved surface of cone is :	65. The vector $2\hat{i} + \hat{j} - \hat{k}$ is perpendicular to $\hat{i} - 4\hat{j} + \tau\hat{k}$ if τ is equal to :
	(a) $\pi l(r_1 + r_2)$ (b) $\frac{1}{2}\pi l(r_1 - r_2)$	(a) 0 (b) -1 (c) -2 (d) -3
	(c) $\pi r_1 r_2 [l + (l^2 - r_1 r_2)]$ (d) $\pi r_1 r_2 [l + (l^2 + r_1 r_2)]$	66. The value of cos10° – sin 10° is :
46.	The degree of the differential equation	(a) Positive (b) Negative (c) 0 (d) 1
10.	$\begin{bmatrix} -1 & (dx) & -(d^2x) \end{bmatrix}^{2/3} (d^3x)^2$	67. If $\sin \alpha = \sin \beta$, then the angle α and β are related by
	$\left[3 + 4\left(\frac{dy}{dx}\right) + 5\left(\frac{d^2y}{dx^2}\right)\right]^{2/3} = \left(\frac{d^3y}{dx^3}\right)^2$ is :	(a) $\alpha = 2n\pi + (-1)^n\beta$ (b) $\alpha = n\pi \pm \alpha$
	(a) 3 (b) 4 (c) 5 (d) 6	(c) $\beta = n\pi + (-1)^n \alpha$ (d) $\beta = (2n+1)\pi + \alpha$
47.	The particular integral of the differential equation	68. The value of $\frac{1-\tan^2 15^*}{1+\tan^2 15^*}$ is :
	$(D^2 - 2D + 1)y = xe^x \sin x$ is given by:	(a) $\sqrt{3}$ (b) $\sqrt{3}/2$ (c) 1 (d) 2
	(a) $e^x \sin(x+1)$ (b) $x(e^x \cos + \sin x)$	69. The general solution of the trigonometrical equation $\sin x + \cos x = 1$ is given by :
	(c) $e^{x}(x\cos x + \sin x)$ (d) $-e^{x}(x\sin x + 2\cos x)$	(a) $x = 2n\pi, n = 0, \pm 1, \pm 2, \dots$
48.	The value of $\frac{1}{(D-3)(D-2)}e^{2x}$ is :	(b) $x = 2n\pi + \frac{\pi}{2}, n = 0, \pm 1, \pm 2, \dots$
	(a) xe^{2x} (b) $2xe^{2x}$ (c) $-xe^{2x}$ (d) $-2xe^{2x}$	(c) $x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}, n = 0, \pm 1, \pm 2, \dots$
49.	Solution of the differential equation	
	$(1 + y^2)dx + (x - e^{-\tan^{-1}y})dy = 0$ is:	(d) $x = n\pi + (-1)^n \frac{\pi}{4}, n = 0, \pm 1, \pm 2, \dots$
	(a) $ye^{\tan^{-1}x} = \tan^{-1}x + c$	70. From the top of a light house 60 metrs high with its base at the sea-level, the angle
	(b) $xe^{\tan^{-1}y} = \tan^{-1}y + c$	of depression of a boat is 16°. The distance of the boat from the foot of the light
	(c) $y = \tan^{-1}x e^{\tan^{-1}x} + c$	house is :
	(d) $y = xe^{-\tan^2 x} + c$	(a) $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$ 60 meters (b) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)$ 60 meters (c) $\frac{\sqrt{3}-1}{\sqrt{3}-1}$ meters (d) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ meters
50.	Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of the vertices P, Q, R of a triangle	(c) $\frac{\sqrt{3}+1}{2}$ meters (d) $\frac{\sqrt{3}-1}{2}$ meters
50.	respectively which of the following represents the area of the triangle?	
	(a) $\frac{1}{2} \vec{a} \times \vec{b} $ (b) $\frac{1}{2} \vec{b} \times \vec{c} $	71. If $\sin \alpha = -\frac{3}{2} \left(\pi < \alpha < \frac{3}{2} \pi \right)$, then the value of $\cos \frac{1}{2} \alpha$ is :
		(a) $-\frac{1}{\sqrt{10}}$ (b) $\frac{1}{\sqrt{10}}$ (c) $\frac{3}{\sqrt{10}}$ (d) $\frac{7}{\sqrt{10}}$
	(c) $\frac{1}{2} \vec{c} \times \vec{a} $ (d) $\frac{1}{2} \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} $	72. The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$ is
51.	If \vec{a} and \vec{b} represent two adjacent sides \vec{AB} and \vec{BC} respectively of a parallelogram	(a) 1 (b) 2 (c) 3 (d) 4
	ABCD, then its diagonals \overrightarrow{AC} and \overrightarrow{DB} are equal to :	73. In a $\triangle ABC$,
	(a) $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ (b) $\vec{a} - \vec{b}$ and $\vec{a} + \vec{b}$	$cosec A(\sin B \cos C + \cos B \sin C)$
	(c) $\vec{a} + 2\vec{b}$ and $\vec{a} - 2\vec{b}$ (d) $2\vec{a} + \vec{b}$ and $2\vec{a} - \vec{b}$	Equals :
52.	Let <i>ABCD</i> be a parallelogram. If $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of A, B, C respectively	(a) c/a (b) a/c (c) 1 (d) 0
52.	with reference to the origin O, then the position vector of D with reference to O is :	74. Three coins are thrown together. The probability of getting two or more head is :
	(a) $\vec{a} + \vec{b} + \vec{c}$ (b) $\vec{b} + \vec{c} - \vec{a}$	(a) 1/4 (b) 1/2 (c) 2/3 (d) 3/8
	(c) $\vec{c} + \vec{a} - \vec{b}$ (d) $\vec{a} + \vec{b} - \vec{c}$	75. The average of n numbers $x_1, x_2, x_3, \dots, x_n$ is A. if is replaced by (-1) , then the new
5.2		average is:
53.	If two vectors \vec{a} and \vec{b} are parallel and have equal magnitudes, then	(a) $\frac{(-1)+}{(-1)+}$ (b) $\frac{+(+1)}{(-1)+}$
	(a) They are not equal (b) They may or may not be equal (b) They may or may or may not be equal (b) They may or may not be equal (b) They may or may not be equal (b) They may or may or may not be equal (b) They may or may or may not be equal (b) They may or may not be equal (b) They may or may or may not be equal (b) They may or may or may not be equal (b) They may or may or may not be equal (b) They may or may o	(c) $\frac{(+1)+}{2}$ (d) +
	(c) They have the same sense of direction	76. For a frequency distribution standard deviation is computed by using the formula
	(d) They do not have the same direction	
54	If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is unit	(a) $= \frac{\Sigma(-)}{\Sigma}$ (b) $= \frac{\sqrt{\Sigma(-)^2}}{\Sigma}$ (c) $= \sqrt{\frac{\Sigma(-)^2}{\Sigma}}$ (d) $= \sqrt{\frac{\Sigma(-)}{\Sigma}}$
54.	vector if	(c) = $\frac{\Sigma(-)^2}{2}$ (d) = $\frac{\Sigma(-)}{2}$
	(a) $\theta = \frac{\pi}{3}$ (b) $\theta = \frac{\pi}{4}$ (c) $\theta = \frac{\pi}{2}$ (d) $\theta = \frac{2\pi}{3}$	
		 77. Which one of the following statement is true for a given distribution ? (a) Mean deviation > Standard deviation
55.	If the position vectors of A and B are $\theta = \vec{a}$ and \vec{b} respectively, then the position vector of a point P which divides AB in the ratio 1:2 is :	(b) Mean deviation < Standard deviation
		(c) Mean deviation = Standard deviation
	(a) $\frac{\vec{a}+\vec{b}}{3}$ (b) $\frac{\vec{b}+2\vec{a}}{3}$ (c) $\frac{\vec{a}+2\vec{b}}{3}$ (d) $\frac{\vec{b}-2\vec{a}}{3}$	(d Mean deviation and Standard deviation are not related
56.	Point A is $\vec{a} + 2\vec{b}$, P is \vec{a} and P divides AB in the ratio 2 : 3. The position vector of B	78. In case of binomial distribution, probability of r successes is given by
	is :	(a) ⁿ C _r qn-rpr (b) ⁿ C _r pn-rqr
	(a) $2\vec{a} - \vec{b}$ (b) $\vec{b} - 2\vec{a}$ (c) $\vec{a} - 3\vec{b}$ (d) \vec{b}	(c) ⁿ C _r p ^{n-r} (d) ⁿ C _r q ^{n-r}
57.	$\vec{a}.\vec{b}$ implies only	79. The standard deviation for Poisson distribution with parameter m is :
	(a) $\vec{a} = 0$	(a) (b) $$ (c) $1/$ (d) $1/\sqrt{m}$
	(b) $\vec{b} = 0$	80. For a normal distribution, we have
	(c) $\theta = 90^{\circ}$	(a) Mean = median (b) median = mode
	(d) either $\vec{a} = 0 \text{ or } \vec{b} = 0 \text{ or } \theta = 90^{\circ}$	(c) mode = mean (d) mean = median = mode 81. The value of the correlation coefficient between two variables lies between
58.	If θ be the angle between the vectors $4(\hat{i} - \hat{k})$ and $\hat{i} + \hat{j} + \hat{k}$, then θ is :	
	(a) $\pi/2$ (b) $\pi/3$ (c) $\pi/4$ (d) $\cos^{-1}(1/\sqrt{3})$	(a) 0 and ∞ (b) $-\infty$ and $+\infty$ (c) 0 and 1 (d) -1 and 1
59.	If $[\vec{a}, \vec{b}, \vec{c}]$ is a scalar triple product of three vectors $\vec{a}, \vec{b}, and \vec{c}$ then $[\vec{a} \ \vec{b} \ \vec{c}]$ is equal to :	82. Crown : Royal
	(a) $[\vec{b} \ \vec{a} \ \vec{c}]$ (b) $\vec{c} \ \vec{b} \ \vec{a}$ (c) $\vec{b} \ \vec{c} \ \vec{a}$ (d) $\vec{a} \ \vec{c} \ \vec{b}$	(a) Throne : Regal (b) Wrap : Earmine
60.	If θ is the angle between vectors \vec{a} and \vec{b} , then $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} $ when θ is equal to :	(c) Pen : Author (d) Crucifix : Religion
	(a) 0 (b) 45° (c) 135° (d) 180°	83. In simple method, when the number of non-zero variables is equal to the number of
61.	If $\vec{a} = 4\hat{i} + 2\hat{j} - 5\hat{k}$, $\vec{b} = -12\hat{i} - 6\hat{j} + 15\hat{k}$, then the vectors \vec{a} , \vec{b} are	constraints, the set of values is said to form a
	(a) Parallel (b) Non-parallel	(a) Feasible solution (b) Basic solution
	(c) Orthogonal (d) Non-Orthogonal	(c) Iso-cost solution (d) Optimal solution
62.	If the position vector of three points are	84. The linear programming problem :
	$\vec{a} - 2\vec{b} + 3\vec{c}, \ 2\vec{a} + 3\vec{b} - 4\vec{c}, \ 7\vec{b} + 10\vec{c}$	Maximize $z = 4x + y$
	Then the three points are	Subject to $3x + 5y \le 15$,
	(a) Collinear (b) Coplanar	$5x + y \le 15,$
	(c) Non-coplanar (d) Neither	$-x + y \leq 2$, $4x + 5x \leq 20$
63.	If $\vec{A} = 2\hat{\imath} + 2\hat{\jmath} - \hat{k}$, $\vec{B} = 6\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$, then $\vec{A} \times \vec{B}$ will be given by	$ \begin{array}{l} 4x + 5y \leq 20, \\ x, y \geq 0 \end{array} $
	(a) $2\hat{\imath} - 2\hat{\jmath} - \hat{k}$ (b) $6\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$	$x, y \ge 0$ has:
	(c) $\hat{\imath} - 10\hat{\jmath} - 18\hat{k}$ (d) $\hat{\imath} + \hat{\jmath} + \hat{k}$	(a) No solution (b) One solution
64.	If $ \vec{a} = \vec{b} $, then $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$ is :	(c) Infinite solution (d) Finite solution
	(a) Positive (b) Negative	

Add:-IN FRONT OF ANURAG HOSPITAL, 9 NO. CROSSING KANPUR Mo. No. 9554548576, 8299331570

aRula 4		87 In 1	Front of Anurag hospital, Crossing no. 9 Kanpur Cont. No. 9554548576, 8299331570
Na	Visit us: www.maarulaclasses.in		for online test series: www.maarulatest.com
1 and 1		-IU-2	
		10-2	
85.	The resultant of two forces P, Q acting at a certain angle is X; and that of P, R acting at the same angle is also X. then the value of P is (a) $\sqrt{Q^2 + RX}$ (b) $\sqrt{R^2 + QX}$		Directions (101 - 105) : Data on the candidates, who took an examination is Social Sciences, Mathematics and Science are given below : Passed in all Subjects 167 Failed in all Subjects 60
86.	(c) $\sqrt{X^2 + QR}$ (d) $\sqrt{QR(Q + R)}$ ABCDE is a pentagon. Forces acting on a particle are represented in magnitude and direction by		Failed in Science 175 Failed in Mathematics 199 Failed in Science 191
	$\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CD}, 2\overrightarrow{DE}, \overrightarrow{AD}$ and \overrightarrow{AE} . Their resultant is given by (a) \overrightarrow{AE} (b) $2\overrightarrow{AE}$ (c) $3\overrightarrow{AE}$ (d) $4\overrightarrow{AE}$		Passed in Social Sciences only 62
87.	Which one of the following is not a force ?		Passes in Mathematics only 48 Passed in Science only 52
	(a) Tension (b) Attraction (c) Weight (d) acceleration		Answer the following questions based on above data :
88.	Two like parallel forces P and Q act on a rigid body at A and B respectively. if P and Q be interchanged in position, then the point of application of the resultant will be		How many failed in one subjects only ?
	displaced through a distance (along AB)		(a) 56 (b) 61 (c) 144 (d) 152 How many failed in two subjects only ?
	(a) $\frac{P+Q}{P-Q}AB$ (b) $\frac{P-Q}{P+Q}AB$ (c) $(P-Q)AB$ (d) $(P+Q)AB$	102.	(a) 56 (b) 61 (c) 144 (d) 162
89.	A beam whose centre of gravity divides it into two portions, a and b is placed inside	103.	How many failed in Social Sciences only ?
	a smooth sphere. If θ be its inclination to the horizon in the position of equilibrium		(a) 15 (b) 21 (c) 30 (d) 42
	and 2α be the angle subtended by the beam at the centre of the sphere, then	104.	How many passed at least in one subject ? (a) 167 (b) 304 (c) 390 (d) 450
	(a) $\tan \theta = (b-a)(b+a) \tan \alpha$ (b) $\tan \theta = (b-a)(b+a) \tan \alpha$	105.	How many passed in Mathematics and at least in one more subject?
	$(b) \tan \theta = \frac{1}{(b+a)}$		(a) 94 (b) 170 (c) 203 (d) 210
	(b) $\tan \theta = \frac{(b-a)}{(b+a)} \tan \alpha$ (c) $\tan \theta = \frac{(b-a)}{(b-a)} \tan \alpha$ (d) $\tan \theta = \frac{1}{(b-a)(b+a)} \tan \alpha$		Directions (106 – 108) : These questions are based on the diagram given below. In the diagram, the triangle stands for graduates, squares for membership of
			professional organizations and the circle for membership of social organizations.
90.	P, Q, R are the points on the sides BC, CA, AB of triangle ABC such that BP : PC =		Read each statement and find out the appropriate numbers to represent the people
	CQ : QA = AR : RB = m : n. if Δ denote the area of the triangle ABC, then the forces $\overline{AP}, \overline{BQ}, \overline{CR}$ reduce to a couple whose moment is :	8	covered by statements :
	(a) $2\frac{m+n}{m+n}\Delta$ (b) $2\frac{m+n}{m-n}\Delta$	2	
	(a) $2\frac{m-n}{m+n}\Delta$ (b) $2\frac{m+n}{m-n}\Delta$ (c) $2(m^2 - n^2)\Delta$ (d) $2(m^2 + n^2)\Delta$		1 3
91.			7 5 6
	(a) $2PQ xm$ (b) $(P^2 - Q^2)xm$		2
	(a) $2PQ xm$ (b) $(P^2 - Q^2)xm$ (c) $\frac{2PQ}{P^2 - Q^2}xm$ (d) $\frac{2PQ}{P^2 + Q^2}xm$	106.	Number of graduates in social organizations is represented by
92.	If the resultant of two forces P and Q acting at a point at an angle a is (2m +		(a) 1 (b) 5 (c) 6 (d) 5 and 6
	$1)\sqrt{P^2+Q^2}$ and when they act at an angle $\left[\frac{\pi}{2}-\alpha\right]$, the resultant becomes $(2m-1)\sqrt{P^2+Q^2}$	107.	Number of graduates in social organizations is represented by
	$1)\sqrt{P^2+Q^2}$, then		(a) 3 (b) 4 (c) 5 (d) 6
	(a) $\tan \alpha = \frac{1}{m+1}$ (b) $\tan \alpha = \frac{1}{m-1}$ (c) $\tan \alpha = \frac{m+1}{m-1}$ (d) $\tan \alpha = \frac{m-1}{m+1}$		Number of graduates in professional organizations is represented by (a) 5 and 7 (b) 4, 5 and 6
	(a) $\tan \alpha = \frac{1}{m+1}$ (b) $\tan \alpha = \frac{1}{m-1}$ (c) $\tan \alpha = \frac{m+1}{m-1}$ (d) $\tan \alpha = \frac{m-1}{m+1}$	200	(c) 6 and 7 (d) 5, 6 and 7
93.	To a man walking at 2km/hr the rain appears to fall vertically when he increases	109.	A survey was conducted on a sample of 1000 persons with reference to their
	his speed to 4km/hr it appears to meet him at an angle of 45°. Then the actual velocity of rain is :		knowledge of English, French and German. The result is presented in the Venn diagram. The ratio of the number of persons who do not know the three languages
	(a) $\sqrt{2} km/hr$ (b) $\sqrt{3} km/hr$	4	to those who know all the three languages is :
	(c) $2\sqrt{2} km/hr$ (d) $2\sqrt{3} km/hr$	1	califier French
94.	Acceleration of a moving point is :	5	
	(a) A negative quantity (b) a vector quantity (c) A single number (d) A positive number		170 (105) 180
95.	If a body is falling freely under gravity, then the acceleration	-	25 78
	(a) Is zero	_	85 10
	(b) Is uniform (c) Varies as the square of the distance travelled		200 English
	(d) Varies as the inverse of the distance travelled		
96.	A point moves with uniform acceleration and v_1, v_2, v_3 denote the average velocities		(a) 1/27 (b) 1/25 (c) 7/550 (d) 175/1000
	in three successive intervals of time t_1, t_2, t_3 then (a) $v_1 - v_2 = t_1 + t_2$ (b) $v_1 + v_2 = t_1 + t_2$	110.	The following diagram, R represents businessmen, S represents rich men, T represents honest men. Which number will represent honest rich men ?
	(a) $\frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 + t_2}{t_2 + t_3}$ (b) $\frac{v_1 + v_2}{v_2 + v_3} = \frac{t_1 + t_2}{t_2 + t_3}$		S
	(c) $\frac{v_1 + v_2}{v_2 + v_3} = \frac{t_1 - t_2}{t_2 - t_3}$ (d) $\frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 - t_2}{t_2 - t_3}$		3
97.	A mass m is acted upon by a constant force P lb.w.t. under which in t sec it moves a distance of x feet and acquires a velocity v ft/sec. then x is equal to		R
	(a) $\frac{gP}{2mt^2}$ (b) $\frac{mg}{2v^2P}$ (c) $\frac{gt^2}{2Pm}$ (d) $\frac{mr}{2gP}$		$\left(\begin{array}{c}1\\2\end{array}\right)\left(\begin{array}{c}4\\5\end{array}\right)$
98.	$\frac{(a)}{2mt^2} = \frac{(b)}{2v^2p} = \frac{(b)}{2pm} = \frac{(b)}{2gp}$ Masses of 5kg and 3 kg rest on two inclined planes each of 30° and are connected		
70.	by a string passing over the common vertex. After 2 seconds the mass of 5kg is		
	removed. How far up the plane will the 3kg mass continue to move?		
	(a) $\frac{2}{3}m$ (b) $\frac{3}{5}m$ (c) $\frac{4}{7}m$ (d) $\frac{5}{8}m$		(a) 2 (b) 3 (c) 5 (d) 4
99.	The time of flight of a particle, which is projected with velocity u in a direction making an angle a is given by		Directions (111 – 115) : Which number should come in place of question mark (?) in the following questions :
	making an angle α , is given by (a) $2ug\sin\alpha$ (b) $2ug\cos\alpha$	111.	
	(c) $\frac{2ug\sin\alpha}{g}$ (d) $\frac{2u\cos\alpha}{g}$		
100.	If a particle is projected with a velocity u at an angle $\alpha = 45^\circ$, then		
	(a) the range is minimum		$\begin{pmatrix} 11 & 676 \end{pmatrix}^2 \begin{pmatrix} 56 & 256 \end{pmatrix}^8 \end{pmatrix}$
	(b) the range is maximum		
	(c) the range is maximum and equals $\frac{u^2}{2g}$		7 3
	(d) the time to the highest point is $\frac{u}{g\sqrt{2}}$		(a) 8 (b) 7 (c) 6 (d) 4

Add:-IN FRONT OF ANURAG HOSPITAL, 9 NO. CROSSING KANPUR Mo. No. 9554548576, 8299331570

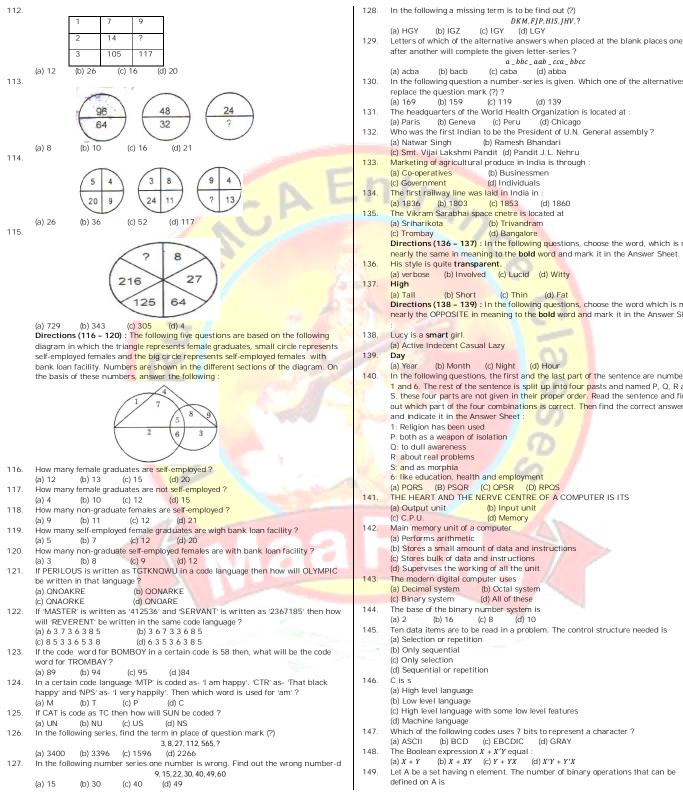
Page 3 AMIT KATIYAR

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- <u>amitkatiyar.jnu08@gmail.com</u>

(b) IGZ

(c) IGY

Cont. No. 9554548576, 8299331570


DKM,FJP,HIS,JHV,?

(d) LGY

for online test series: www.maarulatest.com

BHU-2011

Duration- (2 Hour)

Visit us: www.maarulaclasses.in

127.	Letters of which of the alternative answers which placed at the blank places one
	after another will complete the given letter-series ?
	a_bbc_aab_cca_bbcc
	(a) acba (b) bacb (c) caba (d) abba
130.	In the following question a number-series is given. Which one of the alternatives will
	replace the question mark (?) ?
	(a) 169 (b) 159 (c) 119 (d) 139
131.	The headquarters of the World Health Organization is located at :
	(a) Paris (b) Geneva (c) Peru (d) Chicago
132.	Who was the first Indian to be the President of U.N. General assembly?
	(a) Natwar Singh (b) Ramesh Bhandari
	(c) Smt. Vijai Lakshmi Pandit (d) Pandit J.L. Nehru
133.	Marketing of agricultural produce in India is through :
	(a) Co-operatives (b) Businessmen
	(c) Government (d) Individuals
134.	The first railway line was laid in India in :
104.	(a) 1836 (b) 1803 (c) 1853 (d) 1860
135.	The Vikram Sarabhai space cnetre is located at
155.	(a) Sriharikota (b) Trivandram
	Directions (136 – 137) : In the following questions, choose the word, which is most
	nearly the same in meaning to the bold word and mark it in the Answer Sheet.
136.	His style is quite transparent.
	(a) verbose (b) Involved (c) Lucid (d) Witty
137.	High
	(a) Tall (b) Short (c) Thin (d) Fat
	Directions (138 – 139) : In the following questions, choose the word which is most
	nearly the OPPOSITE in meaning to the bold word and mark it in the Answer Sheet
138.	Lucy is a smart girl.
	(a) Active Indecent Casual Lazy
139.	Day
	(a) Year (b) Month (c) Night (d) Hour
140.	In the following questions, the first and the last part of the sentence are numbered
	1 and 6. The rest of the sentence is split up into four pasts and named P, Q, R and
	S. these four parts are not given in their proper order. Read the sentence and find
	out which part of the four combinations is correct. Then find the correct answer
	and indicate it in the Answer Sheet :
	1: Religion has been used
	P: both as a weapon of isolation
	Q: to dull awareness
	R: about real problems
	S: and as morphia
	6: like education, health and employment
	(a) PQRS (B) PSQR (C) QPSR (D) RPQS
141.	THE HEART AND THE NERVE CENTRE OF A COMPUTER IS ITS
	(a) Output unit (b) Input unit
	(c) C.P.U. (d) Memory
142.	Main memory unit of a computer
	(a) Performs arithmetic
	(b) Stores a small amount of data and instructions
	(c) Stores bulk of data and instructions
	(d) Supervises the working of all the unit
143.	The modern digital computer uses
143.	(a) Decimal system (b) Octal system
1.4.4	(c) Binary system (d) All of these
144.	The base of the binary number system is
	(a) 2 (b) 16 (c) 8 (d) 10
145.	Ten data items are to be read in a problem. The control structure needed is
	(a) Selection or repetition
	(b) Only sequential
	(c) Only selection
	(d) Sequential or repetition
146.	C is s
	(a) High level language
	(b) Low level language
	(c) High level language with some low level features
	(d) Machine language
147.	Which of the following codes uses 7 bits to represent a character ?
	(a) ASCII (b) BCD (c) EBCDIC (d) GRAY
148.	The Boolean expression $X + X'Y$ equal :
140.	
140	
149.	Let A be a set having n element. The number of binary operations that can be

Add:-IN FRONT OF ANURAG HOSPITAL, 9 NO. CROSSING KANPUR Mo. No. 9554548576, 8299331570

AMIT KATIYAR (MCA-JNU) 117/0/687 In front of Anurag hospital, Crossing no. 9 Kanpur E-mail ID- amitkatiyar.jnu08@gmail.com Cont. No. 9554548576, 8299331570 Visit us: www.maarulaclasses.in

for online test series: www.maarulatest.com

BHU-2011

Duration- (2 Hour)

(a) z^{n^n} (c) n^{zⁿ} (d) z^{z^n} (b) n^{n^2} 150. The Boolean expression (A+C)(AB'+AC)(A'C'+B')can be simplified to

(a) <i>AB</i> + <i>A'C</i>	
(C) AB + BC	

(b) A'B + BC(d) AB

